Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.653
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1349046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456081

RESUMO

Endogenous retroviruses (ERVs) originate from ancestral germline infections caused by exogenous retroviruses. Throughout evolution, they have become fixed within the genome of the animals into which they were integrated. As ERV elements coevolve with the host, they are normally epigenetically silenced and can become upregulated in a series of physiological and pathological processes. Generally, a detailed ERV profile in the host genome is critical for understanding the evolutionary history and functional performance of the host genome. We previously characterized and cataloged all the ERV-K subtype HML-8 loci in the human genome; however, this has not been done for the chimpanzee, the nearest living relative of humans. In this study, we aimed to catalog and characterize the integration of HML-8 in the chimpanzee genome and compare it with the integration of HML-8 in the human genome. We analyzed the integration of HML-8 and found that HML-8 pervasively invaded the chimpanzee genome. A total of 76 proviral elements were characterized on 23/24 chromosomes, including detailed elements distribution, structure, phylogeny, integration time, and their potential to regulate adjacent genes. The incomplete structure of HML-8 proviral LTRs will undoubtedly affect their activity. Moreover, the results indicated that HML-8 integration occurred before the divergence between humans and chimpanzees. Furthermore, chimpanzees include more HML-8 proviral elements (76 vs. 40) and fewer solo long terminal repeats (LTR) (0 vs. 5) than humans. These results suggested that chimpanzee genome activity is less than the human genome and that humans may have a better ability to shape and screen integrated proviral elements. Our work is informative in both an evolutionary and a functional context for ERVs.


Assuntos
Retrovirus Endógenos , Animais , Humanos , Retrovirus Endógenos/genética , Pan troglodytes/genética , Provírus/genética , Genoma Humano , Genômica
2.
PLoS Genet ; 20(2): e1010836, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330138

RESUMO

Genome-wide genealogies of multiple species carry detailed information about demographic and selection processes on individual branches of the phylogeny. Here, we introduce TRAILS, a hidden Markov model that accurately infers time-resolved population genetics parameters, such as ancestral effective population sizes and speciation times, for ancestral branches using a multi-species alignment of three species and an outgroup. TRAILS leverages the information contained in incomplete lineage sorting fragments by modelling genealogies along the genome as rooted three-leaved trees, each with a topology and two coalescent events happening in discretized time intervals within the phylogeny. Posterior decoding of the hidden Markov model can be used to infer the ancestral recombination graph for the alignment and details on demographic changes within a branch. Since TRAILS performs posterior decoding at the base-pair level, genome-wide scans based on the posterior probabilities can be devised to detect deviations from neutrality. Using TRAILS on a human-chimp-gorilla-orangutan alignment, we recover speciation parameters and extract information about the topology and coalescent times at high resolution.


Assuntos
Especiação Genética , Hominidae , Animais , Humanos , Hominidae/genética , Pan troglodytes/genética , Filogenia , Genética Populacional , Modelos Genéticos
3.
BMC Genom Data ; 25(1): 4, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166646

RESUMO

BACKGROUND: We tackle the problem of estimating species TMRCAs (Time to Most Recent Common Ancestor), given a genome sequence from each species and a large known phylogenetic tree with a known structure (typically from one of the species). The number of transitions at each site from the first sequence to the other is assumed to be Poisson distributed, and only the parity of the number of transitions is observed. The detailed phylogenetic tree contains information about the transition rates in each site. We use this formulation to develop and analyze multiple estimators of the species' TMRCA. To test our methods, we use mtDNA substitution statistics from the well-established Phylotree as a baseline for data simulation such that the substitution rate per site mimics the real-world observed rates. RESULTS: We evaluate our methods using simulated data and compare them to the Bayesian optimizing software BEAST2, showing that our proposed estimators are accurate for a wide range of TMRCAs and significantly outperform BEAST2. We then apply the proposed estimators on Neanderthal, Denisovan, and Chimpanzee mtDNA genomes to better estimate their TMRCA with modern humans and find that their TMRCA is substantially later, compared to values cited recently in the literature. CONCLUSIONS: Our methods utilize the transition statistics from the entire known human mtDNA phylogenetic tree (Phylotree), eliminating the requirement to reconstruct a tree encompassing the specific sequences of interest. Moreover, they demonstrate notable improvement in both running speed and accuracy compared to BEAST2, particularly for earlier TMRCAs like the human-Chimpanzee split. Our results date the human - Neanderthal TMRCA to be [Formula: see text] years ago, considerably later than values cited in other recent studies.


Assuntos
Hominidae , Homem de Neandertal , Animais , Humanos , Homem de Neandertal/genética , Filogenia , Pan troglodytes/genética , Teorema de Bayes , Hominidae/genética , DNA Mitocondrial/genética
4.
Elife ; 132024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38275218

RESUMO

Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution.


Assuntos
Encéfalo , Primatas , Humanos , Animais , Filogenia , Primatas/genética , Encéfalo/fisiologia , Evolução Molecular , Pan troglodytes/genética , Expressão Gênica , Evolução Biológica
5.
Genome Biol Evol ; 16(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38159045

RESUMO

The human brain utilizes ∼20% of all of the body's metabolic resources, while chimpanzee brains use <10%. Although previous work shows significant differences in metabolic gene expression between the brains of primates, we have yet to fully resolve the contribution of distinct brain cell types. To investigate cell type-specific interspecies differences in brain gene expression, we conducted RNA-seq on neural progenitor cells, neurons, and astrocytes generated from induced pluripotent stem cells from humans and chimpanzees. Interspecies differential expression analyses revealed that twice as many genes exhibit differential expression in astrocytes (12.2% of all genes expressed) than neurons (5.8%). Pathway enrichment analyses determined that astrocytes, rather than neurons, diverged in expression of glucose and lactate transmembrane transport, as well as pyruvate processing and oxidative phosphorylation. These findings suggest that astrocytes may have contributed significantly to the evolution of greater brain glucose metabolism with proximity to humans.


Assuntos
Astrócitos , Pan troglodytes , Animais , Humanos , Astrócitos/metabolismo , Pan troglodytes/genética , Neurônios/metabolismo , Encéfalo/metabolismo , Expressão Gênica
6.
Front Immunol ; 14: 1308316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149259

RESUMO

Introduction: The killer cell immunoglobulin-like receptors (KIR) play a pivotal role in modulating the NK cell responses, for instance, through interaction with major histocompatibility complex (MHC) class I molecules. Both gene systems map to different chromosomes but co-evolved during evolution. The human KIR gene family is characterized by abundant allelic polymorphism and copy number variation. In contrast, our knowledge of the KIR repertoire in chimpanzees is limited to 39 reported alleles, with no available population data. Only three genomic KIR region configurations have been mapped, and seventeen additional ones were deduced by genotyping. Methods: Previously, we documented that the chimpanzee MHC class I repertoire has been skewed due to an ancient selective sweep. To understand the depth of the sweep, we set out to determine the full-length KIR transcriptome - in our MHC characterized pedigreed West African chimpanzee cohort - using SMRT sequencing (PacBio). In addition, the genomic organization of 14 KIR haplotypes was characterized by applying a Cas9-mediated enrichment approach in concert with long-read sequencing by Oxford Nanopore Technologies. Results: In the cohort, we discovered 35 undescribed and 15 already recorded Patr-KIR alleles, and a novel hybrid KIR gene. Some KIR transcripts are subject to evolutionary conserved alternative splicing events. A detailed insight on the KIR region dynamics (location and order of genes) was obtained, however, only five new KIR region configurations were detected. The population data allowed to investigate the distribution of the MHC-C1 and C2-epitope specificity of the inhibitory lineage III KIR repertoire, and appears to be skewed towards C2. Discussion: Although the KIR region is known to evolve fast, as observed in other primate species, our overall conclusion is that the genomic architecture and repertoire in West African chimpanzees exhibit only limited to moderate levels of variation. Hence, the ancient selective sweep that affected the chimpanzee MHC class I region may also have impacted the KIR system.


Assuntos
Hominidae , Pan troglodytes , Animais , Humanos , Pan troglodytes/genética , Haplótipos , Alelos , Variações do Número de Cópias de DNA , Hominidae/genética , Antígenos de Histocompatibilidade Classe I/genética , Receptores KIR/genética , Antígenos HLA , Primatas/genética , Células Matadoras Naturais
7.
Genome Biol Evol ; 15(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967251

RESUMO

Y chromosomal ampliconic genes (YAGs) are important for male fertility, as they encode proteins functioning in spermatogenesis. The variation in copy number and expression levels of these multicopy gene families has been studied in great apes; however, the diversity of splicing variants remains unexplored. Here, we deciphered the sequences of polyadenylated transcripts of all nine YAG families (BPY2, CDY, DAZ, HSFY, PRY, RBMY, TSPY, VCY, and XKRY) from testis samples of six great ape species (human, chimpanzee, bonobo, gorilla, Bornean orangutan, and Sumatran orangutan). To achieve this, we enriched YAG transcripts with capture probe hybridization and sequenced them with long (Pacific Biosciences) reads. Our analysis of this data set resulted in several findings. First, we observed evolutionarily conserved alternative splicing patterns for most YAG families except for BPY2 and PRY. Second, our results suggest that BPY2 transcripts and proteins originate from separate genomic regions in bonobo versus human, which is possibly facilitated by acquiring new promoters. Third, our analysis indicates that the PRY gene family, having the highest representation of noncoding transcripts, has been undergoing pseudogenization. Fourth, we have not detected signatures of selection in the five YAG families shared among great apes, even though we identified many species-specific protein-coding transcripts. Fifth, we predicted consensus disorder regions across most gene families and species, which could be used for future investigations of male infertility. Overall, our work illuminates the YAG isoform landscape and provides a genomic resource for future functional studies focusing on infertility phenotypes in humans and critically endangered great apes.


Assuntos
Hominidae , Pan paniscus , Animais , Masculino , Humanos , Pan paniscus/genética , Hominidae/genética , Cromossomo Y/genética , Pan troglodytes/genética , Isoformas de Proteínas/genética
8.
Sci Rep ; 13(1): 16711, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794053

RESUMO

HLA and disease studies by using single allele statistics have been fruitless during the last 40 years for explaining association pathogenesis of the associated diseases.Other approaches are necessary to untangle this puzzle. We aim to revisit complement alleleism in humans and primates for both studying MHC and disease association to complotypes and extended MHC haplotypes in order to also explain the positive directional selection of maintaining immune response genes (complement, MHC adaptive and MHC non-specific genes) that keeps these three type of genes together in a short chromosome stretch (MHC) for million years. These genes may be linked to conjointly avoid microbes attack and autoimmunity. In the present paper, it is obtained a new Bf chimpanzee allele, provisionaly named Patr-Bf*A:01,that differs from other Bf alleles by having CTG at eleventh codon of exon 2 in order to start the newly suggested methodology and explain functional and evolutionary MHC obscure aspects. Exons 1 to 6 of Ba fragment of Bf gene were obtained from chimpanzee. This new chimpanzee Factor B allele (Patr-Bf*A:01) is to be identical to a infrequent human Bf allele (SNP rs641153); it stresses the strong evolutive pressure upon certain alleles that are trans specific. It also may apply to MHC extended haplotipes which may conjointly act to start an adequate immune response. It is the first time that a complement MHC class III allele is described to undergo trans species evolution,in contrast to class I and class II alleles which had already been reported . Allelism of complement factors are again proposed for studying MHC complement genes, complotypes, and extended MHC haplotypes which may be more informative that single MHC marker studies.


Assuntos
Hominidae , Pan troglodytes , Masculino , Animais , Humanos , Alelos , Pan troglodytes/genética , Complexo Principal de Histocompatibilidade/genética , Hominidae/genética , Antígenos de Histocompatibilidade , Fator B do Complemento/genética , Cromossomos
9.
Science ; 382(6667): eade9516, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824638

RESUMO

The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly understood. We used comparative single-nucleus transcriptomics to analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets to understand human-specific features of the neocortex. Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG. Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage. Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes distinctively define adult human cortical structure.


Assuntos
Cognição , Hominidae , Neocórtex , Lobo Temporal , Animais , Humanos , Perfilação da Expressão Gênica , Gorilla gorilla/genética , Hominidae/genética , Hominidae/fisiologia , Macaca mulatta/genética , Pan troglodytes/genética , Filogenia , Transcriptoma , Neocórtex/fisiologia , Especificidade da Espécie , Lobo Temporal/fisiologia
10.
Nat Ecol Evol ; 7(11): 1930-1943, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37667001

RESUMO

Enhanced cognitive function in humans is hypothesized to result from cortical expansion and increased cellular diversity. However, the mechanisms that drive these phenotypic innovations remain poorly understood, in part because of the lack of high-quality cellular resolution data in human and non-human primates. Here, we take advantage of single-cell expression data from the middle temporal gyrus of five primates (human, chimp, gorilla, macaque and marmoset) to identify 57 homologous cell types and generate cell type-specific gene co-expression networks for comparative analysis. Although orthologue expression patterns are generally well conserved, we find 24% of genes with extensive differences between human and non-human primates (3,383 out of 14,131), which are also associated with multiple brain disorders. To assess the functional significance of gene expression differences in an evolutionary context, we evaluate changes in network connectivity across meta-analytic co-expression networks from 19 animals. We find that a subset of these genes has deeply conserved co-expression across all non-human animals, and strongly divergent co-expression relationships in humans (139 out of 3,383, <1% of primate orthologues). Genes with human-specific cellular expression and co-expression profiles (such as NHEJ1, GTF2H2, C2 and BBS5) typically evolve under relaxed selective constraints and may drive rapid evolutionary change in brain function.


Assuntos
Primatas , Transcriptoma , Animais , Humanos , Encéfalo/metabolismo , Redes Reguladoras de Genes , Pan troglodytes/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo
11.
Genome Biol ; 24(1): 207, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697401

RESUMO

BACKGROUND: Comparative gene expression studies in apes are fundamentally limited by the challenges associated with sampling across different tissues. Here, we used single-cell RNA sequencing of embryoid bodies to collect transcriptomic data from over 70 cell types in three humans and three chimpanzees. RESULTS: We find hundreds of genes whose regulation is conserved across cell types, as well as genes whose regulation likely evolves under directional selection in one or a handful of cell types. Using embryoid bodies from a human-chimpanzee fused cell line, we also infer the proportion of inter-species regulatory differences due to changes in cis and trans elements between the species. Using the cis/trans inference and an analysis of transcription factor binding sites, we identify dozens of transcription factors whose inter-species differences in expression are affecting expression differences between humans and chimpanzees in hundreds of target genes. CONCLUSIONS: Here, we present the most comprehensive dataset of comparative gene expression from humans and chimpanzees to date, including a catalog of regulatory mechanisms associated with inter-species differences.


Assuntos
Corpos Embrioides , Pan troglodytes , Humanos , Animais , Pan troglodytes/genética , Linhagem Celular , Perfilação da Expressão Gênica , Transcriptoma
12.
Nature ; 620(7972): 145-153, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468639

RESUMO

Human-specific genomic changes contribute to the unique functionalities of the human brain1-5. The cellular heterogeneity of the human brain6,7 and the complex regulation of gene expression highlight the need to characterize human-specific molecular features at cellular resolution. Here we analysed single-nucleus RNA-sequencing and single-nucleus assay for transposase-accessible chromatin with sequencing datasets for human, chimpanzee and rhesus macaque brain tissue from posterior cingulate cortex. We show a human-specific increase of oligodendrocyte progenitor cells and a decrease of mature oligodendrocytes across cortical tissues. Human-specific regulatory changes were accelerated in oligodendrocyte progenitor cells, and we highlight key biological pathways that may be associated with the proportional changes. We also identify human-specific regulatory changes in neuronal subtypes, which reveal human-specific upregulation of FOXP2 in only two of the neuronal subtypes. We additionally identify hundreds of new human accelerated genomic regions associated with human-specific chromatin accessibility changes. Our data also reveal that FOS::JUN and FOX motifs are enriched in the human-specifically accessible chromatin regions of excitatory neuronal subtypes. Together, our results reveal several new mechanisms underlying the evolutionary innovation of human brain at cell-type resolution.


Assuntos
Evolução Molecular , Giro do Cíngulo , Animais , Humanos , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Conjuntos de Dados como Assunto , Genoma Humano/genética , Genômica , Giro do Cíngulo/citologia , Giro do Cíngulo/metabolismo , Macaca mulatta/genética , Neurônios/classificação , Neurônios/citologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Pan troglodytes/genética , Análise da Expressão Gênica de Célula Única , Células-Tronco/citologia , Transposases/metabolismo , Montagem e Desmontagem da Cromatina
13.
Mol Ecol ; 32(14): 3842-3858, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277946

RESUMO

Populations on the edge of a species' distribution may represent an important source of adaptive diversity, yet these populations tend to be more fragmented and are more likely to be geographically isolated. Lack of genetic exchanges between such populations, due to barriers to animal movement, can not only compromise adaptive potential but also lead to the fixation of deleterious alleles. The south-eastern edge of chimpanzee distribution is particularly fragmented, and conflicting hypotheses have been proposed about population connectivity and viability. To address this uncertainty, we generated both mitochondrial and MiSeq-based microsatellite genotypes for 290 individuals ranging across western Tanzania. While shared mitochondrial haplotypes confirmed historical gene flow, our microsatellite analyses revealed two distinct clusters, suggesting two populations currently isolated from one another. However, we found evidence of high levels of gene flow maintained within each of these clusters, one of which covers an 18,000 km2 ecosystem. Landscape genetic analyses confirmed the presence of barriers to gene flow with rivers and bare habitats highly restricting chimpanzee movement. Our study demonstrates how advances in sequencing technologies, combined with the development of landscape genetics approaches, can resolve ambiguities in the genetic history of critical populations and better inform conservation efforts of endangered species.


Assuntos
Variação Genética , Genética Populacional , Animais , Variação Genética/genética , Ecossistema , Pan troglodytes/genética , Fluxo Gênico , Repetições de Microssatélites/genética , Haplótipos/genética
14.
Cell ; 186(14): 2977-2994.e23, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37343560

RESUMO

Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether human cells exhibit distinct genetic dependencies. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation. These genes comprised coherent processes, including cell-cycle progression and lysosomal signaling, which we determined to be human-derived by comparison with orangutan cells. Human-specific robustness to CDK2 and CCNE1 depletion persisted in neural progenitor cells and cerebral organoids, supporting the G1-phase length hypothesis as a potential evolutionary mechanism in human brain expansion. Our findings demonstrate that evolutionary changes in human cells reshaped the landscape of essential genes and establish a platform for systematically uncovering latent cellular and molecular differences between species.


Assuntos
Hominidae , Células-Tronco Neurais , Células-Tronco Pluripotentes , Células-Tronco , Animais , Humanos , Pan troglodytes/genética
15.
Science ; 380(6643): eabm1696, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104607

RESUMO

Human accelerated regions (HARs) are conserved genomic loci that evolved at an accelerated rate in the human lineage and may underlie human-specific traits. We generated HARs and chimpanzee accelerated regions with an automated pipeline and an alignment of 241 mammalian genomes. Combining deep learning with chromatin capture experiments in human and chimpanzee neural progenitor cells, we discovered a significant enrichment of HARs in topologically associating domains containing human-specific genomic variants that change three-dimensional (3D) genome organization. Differential gene expression between humans and chimpanzees at these loci suggests rewiring of regulatory interactions between HARs and neurodevelopmental genes. Thus, comparative genomics together with models of 3D genome folding revealed enhancer hijacking as an explanation for the rapid evolution of HARs.


Assuntos
Loci Gênicos , Neurogênese , Animais , Humanos , Cromatina/genética , Genoma Humano , Genômica , Pan troglodytes/genética , Neurogênese/genética , Aprendizado Profundo
16.
BMC Genomics ; 24(1): 198, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046221

RESUMO

BACKGROUND: As a significant process of post-transcriptional gene expression regulation in eukaryotic cells, alternative splicing (AS) of exons greatly contributes to the complexity of the transcriptome and indirectly enriches the protein repertoires. A large number of studies have focused on the splicing inclusion of alternative exons and have revealed the roles of AS in organ development and maturation. Notably, AS takes place through a change in the relative abundance of the transcript isoforms produced by a single gene, meaning that exons can have complex splicing patterns. However, the commonly used percent spliced-in (Ψ) values only define the usage rate of exons, but lose information about the complexity of exons' linkage pattern. To date, the extent and functional consequence of splicing complexity of alternative exons in development and evolution is poorly understood. RESULTS: By comparing splicing complexity of exons in six tissues (brain, cerebellum, heart, liver, kidney, and testis) from six mammalian species (human, chimpanzee, gorilla, macaque, mouse, opossum) and an outgroup species (chicken), we revealed that exons with high splicing complexity are prevalent in mammals and are closely related to features of genes. Using traditional machine learning and deep learning methods, we found that the splicing complexity of exons can be moderately predicted with features derived from exons, among which length of flanking exons and splicing strength of downstream/upstream splice sites are top predictors. Comparative analysis among human, chimpanzee, gorilla, macaque, and mouse revealed that, alternative exons tend to evolve to an increased level of splicing complexity and higher tissue specificity in splicing complexity. During organ development, not only developmentally regulated exons, but also 10-15% of non-developmentally regulated exons show dynamic splicing complexity. CONCLUSIONS: Our analysis revealed that splicing complexity is an important metric to characterize the splicing dynamics of alternative exons during the development and evolution of mammals.


Assuntos
Gorilla gorilla , Pan troglodytes , Masculino , Humanos , Animais , Camundongos , Pan troglodytes/genética , Gorilla gorilla/genética , Éxons/genética , Processamento Alternativo , Isoformas de Proteínas/genética , Mamíferos/genética
17.
Sci Rep ; 13(1): 4947, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973299

RESUMO

A- and B-antigens are present on red blood cells (RBCs) as well as other cells and secretions in Hominoidea including humans and apes such as chimpanzees and gibbons, whereas expression of these antigens on RBCs is subtle in monkeys such as Japanese macaques. Previous studies have indicated that H-antigen expression has not completely developed on RBCs in monkeys. Such antigen expression requires the presence of H-antigen and A- or B-transferase expression in cells of erythroid lineage, although whether or not ABO gene regulation is associated with the difference of A- or B-antigen expression between Hominoidea and monkeys has not been examined. Since it has been suggested that ABO expression on human erythrocytes is dependent upon an erythroid cell-specific regulatory region or the + 5.8-kb site in intron 1, we compared the sequences of ABO intron 1 among non-human primates, and demonstrated the presence of sites orthologous to the + 5.8-kb site in chimpanzees and gibbons, and their absence in Japanese macaques. In addition, luciferase assays revealed that the former orthologues enhanced promoter activity, whereas the corresponding site in the latter did not. These results suggested that the A- or B-antigens on RBCs might be ascribed to emergence of the + 5.8-kb site or the corresponding regions in ABO through genetic evolution.


Assuntos
Hylobates , Pan troglodytes , Animais , Íntrons/genética , Pan troglodytes/genética , Hylobates/genética , Macaca fuscata , Sistema ABO de Grupos Sanguíneos/genética , Sistema ABO de Grupos Sanguíneos/metabolismo , Células Eritroides/metabolismo , Sequências Reguladoras de Ácido Nucleico , Eritrócitos/metabolismo , Primatas/genética , Antígenos/metabolismo
18.
Trends Genet ; 39(6): 451-461, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872184

RESUMO

A large number of studies have established a causal relationship between the gut microbiota and human disease. In addition, the composition of the microbiota is substantially influenced by the human genome. Modern medical research has confirmed that the pathogenesis of various diseases is closely related to evolutionary events in the human genome. Specific regions of the human genome known as human accelerated regions (HARs) have evolved rapidly over several million years since humans diverged from a common ancestor with chimpanzees, and HARs have been found to be involved in some human-specific diseases. Furthermore, the HAR-regulated gut microbiota has undergone rapid changes during human evolution. We propose that the gut microbiota may serve as an important mediator linking diseases to human genome evolution.


Assuntos
Microbioma Gastrointestinal , Hominidae , Microbiota , Animais , Humanos , Microbioma Gastrointestinal/genética , Genoma Humano/genética , Hominidae/genética , Pan troglodytes/genética , Evolução Molecular
19.
Autism Res ; 16(4): 713-722, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738470

RESUMO

Joint attention (JA) is an important milestone in human infant development and is predictive of the onset of language later in life. Clinically, it has been reported that children at risk for or with a diagnosis of autism spectrum disorder (ASD) perform more poorly on measures of JA compared to neurotypical controls. JA is not unique to humans but has also been reported in great apes and to a lesser extent in more distantly related monkeys. Further, individual differences in JA among chimpanzees are associated with polymorphisms in the vasopressin and oxytocin genes, AVPR1A and OXTR. Here, we tested whether individual variation in DNA methylation of OXTR and AVPR1A were associated with performance on JA tasks in chimpanzees. We found that individual differences in JA performance was associated with AVPR1A methylation, but not OXTR methylation in the chimpanzees. The collective results provide further evidence of the role of AVPR1A in JA abilities in chimpanzees. The results further suggest that methylation values for AVPR1A may be useful biomarkers for identifying individuals at risk for ASD or related neurodevelopmental disorders associated with impairments in JA abilities.


Assuntos
Transtorno do Espectro Autista , Ocitocina , Criança , Animais , Humanos , Pan troglodytes/genética , Comportamento Social , Individualidade , Transtorno do Espectro Autista/genética , Metilação , Receptores de Vasopressinas/genética , Vasopressinas , Atenção
20.
Genes (Basel) ; 14(2)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36833167

RESUMO

The growth hormone (GH) locus has experienced a dramatic evolution in primates, becoming multigenic and diverse in anthropoids. Despite sequence information from a vast number of primate species, it has remained unclear how the multigene family was favored. We compared the structure and composition of apes' GH loci as a prerequisite to understanding their origin and possible evolutionary role. These thorough analyses of the GH loci of the chimpanzee, gorilla, and orangutan were done by resorting to previously sequenced bacterial artificial chromosomes (BACs) harboring them, as well as to their respective genome projects data available in GenBank. The GH loci of modern man, Neanderthal, gibbon, and wild boar were retrieved from GenBank. Coding regions, regulatory elements, and repetitive sequences were identified and compared among species. The GH loci of all the analyzed species are flanked by the genes CD79B (5') and ICAM-1 (3'). In man, Neanderthal, and chimpanzee, the loci were integrated by five almost indistinguishable genes; however, in the former two, they rendered three different hormones, and in the latter, four different proteins were derived. Gorilla exhibited six genes, gibbon seven, and orangutan four. The sequences of the proximal promoters, enhancers, P-elements, and a locus control region (LCR) were highly conserved. The locus evolution might have implicated duplications of the ancestral pituitary gene (GH-N) and subsequent diversification of the copies, leading to the placental single GH-V gene and the multiple CSH genes.


Assuntos
Hominidae , Hormônio do Crescimento Humano , Homem de Neandertal , Animais , Feminino , Gravidez , Hominidae/genética , Pan troglodytes/genética , Gorilla gorilla/genética , Hylobates/genética , Homem de Neandertal/genética , Sequência de Bases , Filogenia , Placenta , Hormônio do Crescimento , Hormônio do Crescimento Humano/genética , Primatas/genética , Pongo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...